Bayesian Inference: With ecological applications

(W.A. Link and R.J. Barker. 2010. Academic Press)

第 7章 Multimodel Inference

この章前半 (pp.127-139) の担当: 久保拓弥 kubo@ees.hokudai.ac.jp

paragraph #1 生態学的なプロセスの推定はほとんど必然的に model based である, つまり モデルだのみ

……データ集めの段階で,どんなにがんばってもね.そのモデルには,研究対象である生態学的なプロセスをあらわすコンポーネントがあり,そしてコンポーネントはデータと対応してないといけない.コンポーネントにはいろいろな種類のものが含まれるだろうけど,データにもとづいて推定される未知パラメーターをのぞいて,完全に指定されてなければならない.

paragraph #2 未知パラメーターの推定できました,でオワってしまうことが多い

しかしながら,その結果はあるモデルのもとでという条件つきのものであり,モデルを変えたらまたハナシが変わるでしょう.

paragraph #3 実際のところ,ひとつの現象を説明できそうなモデルはいろいろある

モデルにどういうコンポーネント /* (久保) たとえば説明変数とか */ をいれたらいいのか不確定であり, ある特定のモデルだけによる推定というのは, このあたりの不確定性を隠匿している.

paragraph #4 モデルが複雑なときにはモデル選びは実用的に重要だ

「興味あるパラメーター」(parameters of interest) の推定を正確にするために,モデル中に「あまり興味ないパラメーター」(nuisance parameters) /* (久保) たとえば,個体差とか random effects 的なやつ......いわゆる fixed effects 的なものも nuisance になりうるけれど*/ をいれるんだけど,よけーな nuisance parameters はもちろん, nuisance じゃないパラメーター数も増やしたくない.

paragraph #5 ある一個のモデルを選んで推定するのではなく,推定過程の一部にモデル不確 定性を含めることができればよいのだが.....

そして,モデル内・モデル間の不確定性を反映した推定結果を得たい.たとえば K 個のモデル候補があったとして,生残率 $\hat{\phi}_k$ とその標準誤差 $s(\hat{\phi}_k)$ を推定したい /* (久保) この $\hat{\phi}_k$ は最尤推定値とかでしょう */ . Buckland et~al.(1997) は $\sum_{k=1}^K w_k = 1$ と規格化された「重み」を使って,こんなふうに combining model specific estimate

$$\tilde{\phi} = \sum_{k=1}^{K} w_k \hat{\phi}_k \tag{7.1}$$

あるいは composite measure of uncertainty

$$s(\tilde{\phi}) = \sum_{k=1}^{K} w_k \sqrt{s(\hat{\phi}_k)^2 + (\hat{\phi}_k - \tilde{\phi})^2}$$

を提案してみた.(てきとうな数値計算例).....これにはモデル内・モデル間のばらつきが含まれている.

paragraph #6 複数モデル推定の問題は「モデル選択」と「モデル重みづけ」

モデル選択はいくつかの候補の中から一番よいものを選ぶ、選択のためには推定が必要、モデル 重みづけは,モデルごとの推定結果に重みづけをして混ぜるんだけど,そのモデルのたしからし さとか不確定性がそこに加味される.

paragraph #7 しかし,現在のところ (そしてたぶん将来も) 誰もが納得してくれる方法はない......

ベイズでどうこうしよう,というアプローチも同様.

paragraph #8 だけど Bayesian Multimodel Inference (BMI) って良いんじゃないかな?

というのも,第一章で述べたように,ベイズ的な方法にはいろいろ良いところがあって,BMI はその「自然な」拡張になっている.あるモデルの事前確率を設定し,推定された事後モデル確率でモデルを組みあわせられる.複数のモデルの中から一個モデルを選びたい場合でも,その選択の規準を計算できる.

paragraph #9 この章であつかうことは......

ベイズ因子 (Bayes factor), ベイズ情報量規準 (Bayesian information criterion; BIC), Deviance ifnromation criterion (DIC). 可逆ジャンプマルコフ連鎖モンテカルロ法 (Rerversible jump Marcov chain Monte Carlo) /* (久保) こんな訳語でいいのか? */ 、そして BUGS による BMI の簡単な実装など.

paragraph #10 BMI で難しいことのひとつは......

あいまいな事前分布 (vague prior) /* (久保) いわゆる無情報事前分布のたぐい 7.2.5 項に登場 */ の選択が難問である . モデルが一個のときは , どういうあいまい事前分布でもよいのだけど , 複数モデルの場合はそう簡単ではない . /* (久保) ぁとからまた議論 */

paragraph #11 ちかごろ生態学では AIC ってのがハヤリだけど......

この章では,このあたりもベイズと関連づけて議論しよう.

7.1 The BMI Model

paragraph #1 BMI ってのはホントにベイズ統計モデルそのまま!

変数はすべて確率変数,事後分布を推定.

paragraph #2 BMI では,まず Model なる確率変数を考えて......

これは「自然」(Nature) が Fig. 7.1 みたいなモデルがたくさん (K 個) 入ったバケツからある

モデルを選ぶ確率.さらに「自然」はパラメーターを事前分布からパラメーターを選び,選んだモデルで *Data* を生成している.

paragraph #3 統計学的な推定のほとんどでは......

「自然」がどのモデルを選んだかを知ってる,フリをしている.それに対して,BMI はモデルの不確定性を認知している.

paragraph #4 Model は多項分布の確率変数だと思って......

それぞれのモデルが選ばれる確率を π_1,π_2,\cdots,π_K としてみる.モデルをひいきしないなら, $\pi_k=1/K$,等確率.あるいは事前の信念とやらを反映させてもよい.最節約的なモデルが良いとかね.

Objections! (異議あり!)

paragraph #5 異議 1: 自然はバケツからモデルを選ばない!

まあ,便利だからいいじゃない.

paragraph #6 異議 2: そのバケツの中に真のモデルがなかったら?

それは考えてもしょうがないので , $Model\ k \in \{1,2,\cdots,K\}$ の中に真なモデルがあると思って計算することにしよう .

paragraph #7 バケツモデルそれ自体ひとつのモデルだし

これがおとしどころ,ということで.

7.1.1 Example: BMI for Two Fully Specified Models

paragraph #1 幾何分布とポアソン分布

/* (久保) いきなりふたつの統計モデリングのハナシです */ 幾何分布 (geometric distribution) の確率密度 関数 (PDF) は $p(1-p)^y$ で , ポアソン分布 (Poisson distribution) は $\exp(-\lambda)\lambda^y/y!$. どちらも $y=0,1,2,\cdots$ な値をとる .

paragraph #2 幾何分布モデル vs ポアソン分布モデル

てもとに $\mathbf{Y}=\{Y_1,Y_2,\cdots,Y_5\}$ というデータがあり,幾何分布モデルもしくはポアソン分布モデルが生成した.M は「自然」が選ぶモデルをあらわす名義変数な確率変数.幾何分布モデルの尤度は,

$$\Pr(\mathbf{Y}|M_1, p) = \prod_{k=1}^{5} p(1-p)^{Y_i} = p^5 (1-p)^{5\bar{Y}}$$
(7.2)

となり,この式の中の $ar{Y} = rac{1}{5} \sum_{i=1}^5 Y_i$.ポアソン分布モデルは

$$\Pr(\mathbf{Y}|M_2,\lambda) = \prod_{k=1}^5 \frac{\exp(-\lambda)\lambda^{Y_i}}{Y_i!} = \frac{\exp(-5\lambda)\lambda^{5\bar{Y}}}{\prod_{i=1}^5 Y_i!}$$
(7.3)

となる M_k と書いてるのはホントは $M=M_k$ だけど , 上のように書くのがラクなのでそうする .

paragraph #3 簡単のため真の平均 (pupulation mean) は 3, だと知ってる

つまり p=1/4 /* (久保) 幾何分布の平均は p/(1-p) なので */ または , $\lambda=3$. Fig. 7.2 の確率密度関数を参照 . 以下では $\Pr(\mathbf{Y}|M_1,p)$ を $\Pr(\mathbf{Y}|M_1)$ と書く .

paragraph #4 M_1 である事後確率は

 π が「 M_1 が選ばれる事前確率」だとすると

$$\Pr(M_1|\mathbf{Y}) = \frac{\pi \Pr(\mathbf{Y}|M_1)}{\pi \Pr(\mathbf{Y}|M_1) + (1-\pi)\Pr(\mathbf{Y}|M_2)}$$
(7.4)

となる.

paragraph #5 さて,たとえばデータが $\mathbf{Y} = \{0,1,2,3,8\}$ だとすると

平均は 2.8 だけど分散は 9.7. ポアソン分布は平均と分散が等しいので , このデータへのあてはまりはよくなさそう . 幾何分布だと良さそう /* (久保) 幾何分布は分散 = 平均 2 なので */ . 幾何分布が選ばれる事前確率を $\pi=0.5$ とすると事後確率 $\Pr(M_1|\mathbf{Y})$ は 0.852 になる . つまりオッズ (odds)が (0.5:0.5) つまり (1:1) から (0.852:0.148) つまり (5.75:1) に変わった .

paragraph #6 こういうオッズの変化は BMI のまとめとして有用

式 (7.4) と同じく, M_2 に関してはこうなる.

$$\Pr(M_2|\mathbf{Y}) = \frac{(1-\pi)\Pr(\mathbf{Y}|M_2)}{\pi\Pr(\mathbf{Y}|M_1) + (1-\pi)\Pr(\mathbf{Y}|M_2)}$$
(7.5)

式 (7.4) と (7.5) の両辺をわると

$$\frac{\Pr(M_1|\mathbf{Y})}{\Pr(M_2|\mathbf{Y})} = \frac{\pi}{1-\pi} \times \frac{\Pr(\mathbf{Y}|M_1)}{\Pr(\mathbf{Y}|M_2)}$$
(7.6)

事後モデルオッズ $rac{\Pr(M_1|\mathbf{Y})}{\Pr(M_2|\mathbf{Y})}$ は事前モデルオッズ $rac{\pi}{1-\pi}$ をデータの相対確率 $rac{\Pr(\mathbf{Y}|M_1)}{\Pr(\mathbf{Y}|M_2)}$ /* (久保) \leftarrow これは尤度比 */ でスケイリングしたものになっている.

paragraph #7 式 (7.6) がベイズ因子 (Bayes factor) の定義

データ Y が定まったものであるとき,上の式をコトバでいいかえると,

Posterior model odds = Prior model odds \times Bayes factor

この例題での BF は 5.75.

7.1.2 Example: BMI with Unknown Parameters

paragraph #1 今度は p や λ がわからない場合

この場合,p や λ の事前分布が必要になる.

paragraph #2 平均確率を評価する

事前分布で重みづけをした平均値.

paragraph #3 事前分布 g(p) と $h(\lambda)$ を導入

尤度はこのように定義される.

$$\Pr(\mathbf{Y}|M_1) = \int p^5 (1-p)^{5\bar{Y}} g(p) dp$$
 (7.7)

$$\Pr(\mathbf{Y}|M_2) = \int \frac{\exp(-5\lambda)\lambda^{5\bar{Y}}}{\prod_{i=1}^5 Y_i!} h(\lambda) d\lambda$$
 (7.8)

paragraph #4 一様分布な事前分布をつかう

事前分布について考えるのはめんどうなので,あとまわし. λ の事前分布は $h(\lambda)=U(0,T)$ /* (久保) 0 から T までの-様分布 */ とする.p.21 の変数変換 $(change\ of\ variables)$ 定理から,p の事前分布は

$$g(p) = \frac{1}{Tp^2}$$

となる $\left(1/(T+1) . /* (久保) 幾何分布の平均を <math>m$ とする . m=(1-p)/p なので $dm/dp=1/p^2$. m の事前分布 f(m)=1/T (範囲 0 < m < T) とすると , この m を p に変数変換した確率密度関数は $g(p)=\frac{1}{T} \times \frac{dm}{dp}=\frac{1}{Tp^2}$ となる . */

paragraph #5 データが $Y = \{0, 1, 2, 3, 8\}$ だとすると

幾何分布モデルが良い, Bayes factor (BF) が 13.84 になるんで /* (久保) これって数値積分したのか? */ 、なぜ平均が未知のほうがよいのだろうか? 平均値が既知の場合の BF は 5.75 だったのに .

paragraph #6 平均が標本平均に一致する分布で BF 最小

Fig. 7.3 でそのように示されている. 平均 2.8 で BF は 5.61 /* (久保) パラメーターの事前確率が異なるので BF = 5.75 にならない */ . ここでモデル間の格差は最小. ところが,ここからずれた平均のときほど,ポアソン分布からの逸脱は相対的に大きくなるので,幾何分布が有利になる.

7.2 Bayes Factors

paragraph #1 Bayes factor で比較できるモデルは......

前の節でみたように,ネストしてる /* (久保) つまり M_1 が M_2 を簡単化したものである */ 必要がない.この節は Baves factor のいろいろな性質を見る.

7.2.1 Bayes Factors and Likelihood Ratio Statistics

paragraph #1 Bayes factor は尤度比の一種

いま K 個のモデルがあって,モデル M_k の未知パラメーターは θ_k とする.かぎかっこ表記 (bracket notation) で書くとデータ Y の確率分布は $[Y|M_k,\theta_k]$ で,パラメーターの事前分布は $[\theta_k|M_k]$ となる.データ Y が定まっているとき, $[Y|M,\theta]$ はモデルとパラメーターの同時尤度 (joint likelihood) であり, θ で積分するとモデル M の周辺尤度 (marginal likelihood) が得られる.

$$[\mathbf{Y}|M] = \int [\mathbf{Y}, \theta|M] d\theta = \int [\mathbf{Y}|\theta, M] [\theta|M] d\theta$$
 (7.9)

BF はこの周辺尤度の比。

$$BF_{i,j} = \frac{[\mathbf{Y}|M_i]}{[\mathbf{Y}|M_i]}$$

頻度主義的な考えかた (frequentist) の尤度比検定統計量に相当する. ただし尤度比検定では θ の最尤推定値を使うが ,

$$LR_{i,j} = \frac{[\mathbf{Y}|\hat{\theta}_i, M_i]}{[\mathbf{Y}|\hat{\theta}_j, M_j]}$$

BF は θ に関する平均である.

7.2.2 Bayes Factors are Multipliers of Odds

/* (久保) この項ではひたすら BF の書きかえやってるだけ */

paragraph #1 BF は事前オッズの比例定数

K 個のモデルがあるとき

$$\Pr(M_i|\mathbf{Y}) = \frac{[\mathbf{Y}|M_i]\pi_i}{\sum_{k=1}^K [\mathbf{Y}|M_k]\pi_k}$$
(7.10)

となるので、ここから事後確率オッズは

$$\frac{\Pr(M_i|\mathbf{Y})}{\Pr(M_i|\mathbf{Y})} = \frac{[\mathbf{Y}|M_i]}{[\mathbf{Y}|M_i]} \times \frac{\pi_i}{\pi_i} = \mathrm{BF}_{i,j} \times \frac{\pi_i}{\pi_j}$$

となり式 (7.6) を一般化したものになる . $\frac{\pi_i}{\pi_j}$ が 1 なら事後確率オッズは BF と同じ .

paragraph #2 Bayes factor は事前モデル確率 π_i に依存しない

ということで,こういう関係も成立する.

$$BF_{1,3} = BF_{1,2}BF_{2,3} \tag{7.11}$$

paragraph #3 式 (7.10) は BF でも書ける

$$\Pr(M_i|\mathbf{Y}) = \frac{\mathrm{BF}_{i,1}}{\sum_{k=1}^K \mathrm{BF}_{k,1} \pi_k}$$
 (7.12)

7.2.3 Updating Bayes Factors

paragraph #1 追加データで Bayes factor のアップデイト

.....が BF のウリである.最初のデータ \mathbf{Y}_1 をとったときの BF は

$$BF_{i,j}(\mathbf{Y}_1) = \frac{[\mathbf{Y}_1|M_i]}{[\mathbf{Y}_1|M_j]} = \frac{\int [\mathbf{Y}_1|M_i, \theta][\theta|M_i]d\theta}{\int [\mathbf{Y}_1|M_j, \theta][\theta|M_j]d\theta}$$

となり,次のデータ \mathbf{Y}_2 をとったときの BF は

$$BF_{i,j}(\mathbf{Y}_2|\mathbf{Y}_1) = \frac{[\mathbf{Y}_2|\mathbf{Y}_1, M_i]}{[\mathbf{Y}_2|\mathbf{Y}_1, M_j]} = \frac{\int [\mathbf{Y}_2|\mathbf{Y}_1, M_i, \theta][\theta|\mathbf{Y}_1, M_i]d\theta}{\int [\mathbf{Y}_2|\mathbf{Y}_1, M_j, \theta][\theta|\mathbf{Y}_1, M_j]d\theta}$$

となる.こちらではパラメーター θ の事前分布に \mathbf{Y}_1 が入っている /* (久保) このあたり,説明が明瞭でないような気がするんだけど, $[\theta|\mathbf{Y}_1,M_i]$ とは θ の事後分布のことだろう.似たような考え方は 7.2.5 節最後の posterior Bayesian factor の説明にも登場する.事後分布を使ったあとづけ計算は,たしかにあれこれと便利ではありますけどねえ…… */ .このように定義すると,BF は

$$BF_{i,j}(\mathbf{Y}_2, \mathbf{Y}_1) \equiv \frac{[\mathbf{Y}_2, \mathbf{Y}_1 | M_i]}{[\mathbf{Y}_2, \mathbf{Y}_1 | M_j]} = \frac{[\mathbf{Y}_2 | \mathbf{Y}_1, M_i]}{[\mathbf{Y}_2 | \mathbf{Y}_1, M_j]} \times \frac{[\mathbf{Y}_1 | M_i]}{[\mathbf{Y}_1 | M_j]}$$
$$= BF_{i,j}(\mathbf{Y}_2 | \mathbf{Y}_1) \times BF_{i,j}(\mathbf{Y}_1)$$

このように分割できる.頻度主義的な検定にはこれに対応するものはない. /* (久保) ょうするに,もともとの BF である $\mathrm{BF}_{i,j}(\mathbf{Y}_1)$ が新データ \mathbf{Y}_2 によって, $\mathrm{BF}_{i,j}(\mathbf{Y}_2|\mathbf{Y}_1)$ 倍の改善 (改悪) されました……というだけのことで,何かの役にたつのかな? ……MCMC 計算時間の短縮とか? */

7.2.4 Bayes Factors as Measures of Relative Support

paragraph #1 $BF_{i,j}$ ってどれぐらい大きければいいの?

 $BF_{i,j} = 5$ ってどういう意味?

paragraph #2 これは事前モデル確率 π に対する事後モデル確率の依存性が , BF によってどう変わるかを調べればよさそう

式 (7.4) は以下のように書きかえられるので,

$$\Pr(M_1|\mathbf{Y}) = \frac{\mathrm{BF}_{1,2}\pi}{\mathrm{BF}_{1,2}\pi + (1-\pi)}$$
 (7.13)

$$\Pr(M_1|\mathbf{Y}) \ge p_0$$
 if and only if $\pi \ge \frac{p_0}{p_0 + \mathrm{BF}_{1,2}(1-p_0)}$

たとえば, BF = 50 のときには, $\Pr(M_1|\mathbf{Y}) > 0.9$ となるためには $\pi > 0.16$ でなければならない.

paragraph #3 あるいは Fig. 7.4 を見よ

paragraph #4 Harold Jeffreys の BF 分類: Table 7.1

似たような分類はほかにもいろいろある /* (久保) うーむ , どうやって決めてるんだろう? */ .式 (7.13) に対して $\pi=0.5$ とすると , モデル M_1 の事後確率は ,

$$Pr(M_1|M_1 \text{ or } M_2, \mathbf{Y}) = \frac{BF_{1,2}}{1 + BF_{1,2}}$$

となり,これは頻度主義な検定のてきとーなる危険率 α 設定より良い.

7.2.5 Problems with Vague Priors on Parameters

paragraph #1 事前分布が vague だと,事後分布はデータで決まる

/* (久保) 前にも書いたけど , vague な事前分布とは無情報事前分布 */ たとえば , $[X|\mu]=N(\mu,1)$ で $[\mu]=N(\mu_0,\sigma^2)$ としよう . パラメーター μ の事後分布は

$$[\mu|X] = N\left(\frac{1}{1+\sigma^2}\mu_0 + \frac{\sigma^2}{1+\sigma^2}X, \frac{\sigma^2}{1+\sigma^2}\right)$$

となり , $\sigma \to \infty$ とすると , これは μ の尤度関数に近づく . ということで , σ の値を十分に大きくしてやると— つまり μ について知識がないといったことなのだが— 事後分布は尤度で決まるようになり , 事前分布の影響がなくなる .

paragraph #2 $\sigma = \infty$ な事前分布は improper だよね

つまり確率分布になってない,ということ.こういう場合は σ を十分に大きくすればよくて, $\sigma=100$ だろうが $\sigma=10^6$ だろうがほとんど同じ事後分布になる.

paragraph #3 こういう事前分布は複数モデルあつかうときにめんどう

モデル一個の推定なら上のような事前分布でよいのだけど.とくに,モデルごとにパラメーター数が異なる場合はたいへん.ここまでの正規分布モデルの例でいうと,

- Model1: [X|M=1]=N(0,1) /* (久保) なぜか $M=M_1$ 記法をやめてしまったようだ */
- Model2: 事前分布を $[\mu] = N(\mu_0, \sigma)$ としたので $[X|M=2] = N(\mu_0, 1)$

となっているときに, BF は

$$\mathrm{BF}_{1,2} = \cdots$$
 (写経に疲れました) $\cdots = \sqrt{1+\sigma^2} \exp\left(-\frac{1}{2}\left\{\frac{X^2\sigma^2 + 2X\mu_0 - \mu_0^2}{1+\sigma^2}\right\}\right)$

これは $\sigma \to \infty$ とすると , $\mathrm{BF}_{1,2} \to \infty$ となってしまう . データ X に関係なくこうなってしまう ので , 常に $\mathrm{Model}\ 1$ が良いということになる .

paragraph #4 Posterior Bayes factor (PBF)

これは事後平均尤度なんだけど,それを比較すれば良いのではと Aitkin~(1991) が提案した.まずは,BF の評価に必要な,周辺分布の計算に立ちかえって,その定義を示すと /* (久保) 下の式は,単に θ を θ_M にしただけのもの */

$$[\mathbf{Y}|M] = \mathrm{E}_{[\theta_M|M]}([\mathbf{Y}|M,\theta_M]) = \int [\mathbf{Y}|M,\theta_M][\theta_M|M]d\theta_M$$

そして, Aitkin の提案は, 上の式の $[\theta_M|M]$ を $[\theta_M|M,\mathbf{Y}]$ に置きかえてしまって......

$$\mathrm{E}_{[\theta_M|M,\mathbf{Y}]}([\mathbf{Y}|M,\theta_M]) = \int [\mathbf{Y}|M,\theta_M][\theta_M|M,\mathbf{Y}]d\theta_M$$

これを使って BF を評価せよ,というもの. /* (久保) このあたり,説明が明瞭では内容な気がするのだが……つまり, $[\theta_M|M,\mathbf{Y}]$ とは θ_M の事後分布のことで,「事後分布で尤度を重みづけした事後確率」が PBF ……これってデータの「二度づけ」だろ,と批判されてる. */

paragraph #5 PBF は同じデータを二回つかってるからダメ,と叩かれている

データにあうように選んだパラメーターで,重みを評価するとそれは過大評価になる.そういう 欠点はあるけれど PBF は良さそう /* (久保) と著者はこだわっています */ .

paragraph #6 Aitkin の別案: データわけろ

training 用データ /* (久保) つまりパラメーター推定用データ */ とモデルの重みづけ計算用データをわければよい,と提案. /* (久保) cross validation 的? */

paragraph #7 結論

マルチモデルな推定において,パラメーターの事前分布の選びかたが問題になる.このあたり,簡単ではない.先験的な好みを反映させぬよう,パラメーターの事前分布は選びたい.節約的なモデルが良いといったことは,モデルの事前確率に反映させるべきだ.このあたり7.4.3 節の例題でまた議論する.