model { Tau.noninformative <- 1.0E-3 Hyper.gamma <- 1.0E-2 # movement of BE unit for (i in 1:N.sample) { NextMove[i] ~ dexp(r[i]) r[i] <- exp( # == 1 / mean - beta[7] - beta[8] * log.mm[i] ) } # nn: number of neighbor groups for (i in 1:N.sample) { Nn[i] ~ dpois(mm[i]) mm[i] <- exp(log.mm[i]) log.mm[i] ~ dnorm(m[i], tau[2]) m[i] <- ( x[P[i]] # random effect + beta[1] * location[i] + beta[2] * water.level[i] + beta[3] * copulation[i] + beta[4] * fruit[i] + beta[5] * flower[i] + beta[6] * youngleaf[i] ) location[i] ~ dnorm(Location[i], tau[3]) water.level[i] ~ dnorm(Water.level[i], tau[3]) copulation[i] ~ dnorm(Copulation[i], tau[3]) fruit[i] ~ dnorm(Fruit[i], tau[3]) flower[i] ~ dnorm(Flower[i], tau[3]) youngleaf[i] ~ dnorm(Youngleaf[i], tau[3]) } # time change of density x[1] ~ dnorm(0.0, Tau.noninformative) for (j in 2:N.DATE) { x[j] ~ dnorm(x[j - 1], tau[1]) } # priors and hyper-priors for (k in 1:N.beta) { beta[k] ~ dnorm(0.0, Tau.noninformative) } for (k in 1:N.tau) { tau[k] ~ dgamma(Hyper.gamma, Hyper.gamma) } }