model { Tau.noninformative <- 1.0E-2 P.gamma <- 1.0E-2 for (i in 1:N.site) { for (j in 1:4) { Y[i, j] ~ dpois(mean[i, j]) log(mean[i, j]) <- beta[j] + re[j, i] } for (j in 1:2) { re[j, i] ~ dnorm(0.0, tau[j]) } } re[3, 1:N.site] ~ car.normal(Adj[], Weights[], Num[], tau[3]) re[4, 1:N.site] ~ car.normal(Adj[], Weights[], Num[], tau[4]) for (j in 1:4) { beta[j] ~ dnorm(0, Tau.noninformative) tau[j] ~ dgamma(P.gamma, P.gamma) } }